Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Mode

Econometrics Causality

Paul P. Momtaz

The Anderson School UCLA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Model

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with t?

Causality in Regressions

Roy (1951) Mode

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Fundamental Problem with Causal Reasoning

Notation

- D_i := treatment for observation i
- ▶ y_i(D_i) := outcome for observation i given treatment

Fundamental Problem (Holland, 1986)

- ► Impossible to observe for same *i* the value D_i = 1 and D_i = 0 as well as y_i(1) and y_i(0).
- That is, there is no true counterfactual evidence.
- Hence it is impossible to observe the effect of D on y for i.

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Model

How to deal with it? ATE and ATT

Average Treatment Effect (ATE)

$$\begin{split} \mathbb{E}[\Delta_i] &= \mathbb{E}[y_i(1) - y_i(0)] \\ &= \mathbb{E}[y_i(1)] - \mathbb{E}[y_i(0)] \end{split}$$

Average Treatment Effect on the Treated (ATT)

$$egin{aligned} \mathbb{E}[\Delta_i | D_i = 1] &= \mathbb{E}[y_i(1) - y_i(0) | D_i = 1] \ &= \mathbb{E}[y_i(1) | D_i = 1] - \mathbb{E}[y_i(0) | D_i = 1] \end{aligned}$$

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Mode

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How to deal with it? Sample Selection Bias

Sample Selection Bias (SSB)

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

$$\begin{split} \mathbb{E}[y_i|D_i = 1] - \mathbb{E}[y_i|D_i = 0] &= \mathbb{E}[y_i(1)|D_i = 1] - \mathbb{E}[y_i(0)|D_i = 0] \\ &= \mathbb{E}[y_i(1)|D_i = 1] - \mathbb{E}[y_i(0)|D_i = 1] \\ &+ \mathbb{E}[y_i(0)|D_i = 1] - \mathbb{E}[y_i(0)|D_i = 0] \\ &= \mathsf{ATT} + \mathbb{E}[y_i(0)|D_i = 1] - \mathbb{E}[y_i(0)|D_i = 0] \\ &= \mathsf{ATT} + \mathsf{Sample Selection Bias} \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

How to deal with it? Randomized Experiments

Randomized Experiments: C, T random samples

$$\mathbb{E}[y_i(0)|i \in C] = \mathbb{E}[y_i(0)|i \in T] = \mathbb{E}[y_i(0)]$$

 $\mathbb{E}[y_i(1)|i \in C] = \mathbb{E}[y_i(1)|i \in T] = \mathbb{E}[y_i(1)]$

$$egin{aligned} \mathbb{E}[\Delta_i] &= \mathbb{E}[y_i(1)] - \mathbb{E}[y_i(0)] \ &= \mathbb{E}[y_i(1)|i \in \mathcal{T}] - \mathbb{E}[y_i(0)|i \in \mathcal{C}] \end{aligned}$$

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Mode

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Causality in Regression Set-up Consider

$$egin{aligned} y_i &= \mu(0) + \Delta_i D_i + u_i(0) \ D_i^* &= lpha + eta z_i + v_i \ D_i &= egin{cases} 1 & D^* \geq 0 \ 0 & D^* < 0 \ \end{pmatrix} \ \Delta_i &= \mu(1) - \mu(0) + u_i(1) + u_i(0) \ &= \mathbb{E}[\Delta_i] + u_i(1) - u_i(0) \end{aligned}$$

$$\mathbb{E}[u_i(1)] = \mathbb{E}[u_i(0)] = \mathbb{E}[v_i] = 0$$

 $\mathbb{E}[\Delta_i] \equiv \mu(1) - \mu(0) = \text{Common gain for every individual}$ $[u_i(1) - u_i(0)] \equiv \text{idiosyncrotic gain that differs for every} i \quad \text{ogg}$

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Mode

Causality in Regression ATE and ATT

$$\begin{aligned} &ATE : \mathbb{E}[\Delta_i] = \mu(1) - \mu(0) \\ &ATT : \mathbb{E}[\Delta_i | D_i = 1] = \mu(1) - \mu(0) + \mathbb{E}[u_i(1) - u_i(0) | D_i = 1] \end{aligned}$$

 $ATE \neq ATT$ since average idiosyncratic gain for treated $\mathbb{E}[u_i(1) - u_i(0)|D_i = 1].$

ATE = ATT if

- ► Idiosyncratic gain zero, u_i(1) = u_i(0), then constant coefficients model.
- ► Average idiosyncratic gain for treated zero E[u_i(1) - u_i(0)|D_i = 1] = 0, then treatment is random and independent of average idiosyncratic gain

Bias of ATE for random person since $\mathbb{E}[\varepsilon_i \Delta_i] \neq 0$. Estimated coefficient of y_i on D_i is biased estimate of $\mathbb{E}[\Delta_i]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Model

Causality in Regression Biases

$$\mathbb{E}[y_i|D_i = 1] - \mathbb{E}[y_i|D_i = 0] = \mathbb{E}[\Delta_i] + \mathbb{E}[u_i(1) - u_i(0)|D_i = 1] + \mathbb{E}[u_i(0)|D_i = 1] - \mathbb{E}[u_i(0)|D_i = 0] = 0$$
OLS regression bias
Causality in
Regressions

Need controlled experiment so that
$$\mathbb{E}[u_i(1)] = \mathbb{E}[u_i(1)|D_i = 1] = 0$$

and $\mathbb{E}[u_i(0)] = \mathbb{E}[u_i(0)|D_i = 0] = 0$

Same problem for ATT: "Mean Selection Bias" since $\mathbb{E}[\eta_i D_i] \neq 0$.

$$\mathbb{E}[y_i|D_i=1] - \mathbb{E}[y_i|D_i=0] = \mathbb{E}[y_i|D_i=1] + \underbrace{\mathbb{E}[u_i(0)|D_i=1] - \mathbb{E}[u_i(0)|D_i=0]}_{\mathbf{E}[u_i(0)|D_i=1] - \mathbb{E}[u_i(0)|D_i=0]}$$

MeanSelectionBias

Mean Selection Bias is zero if base state for all the same i.e. $\mathbb{E}[u_i(0)D_i] = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Econometrics

Paul P. Momtaz

The Fundamental Problem with

Roy (1951) Mode

Roy (1951) Model

Idea: Idiosyncratic gain exists and determines treatment participation.

$$\mathbb{E}[D_i|u_i(1)-u_i(0)]\neq \mathbb{E}[D_i]$$

Then

$$\mathbb{E}[u_i(1) - u_i(0)|D_i = 1] \neq \mathbb{E}[u_i(1) - u_i(0)]$$

 $ATE \neq ATT$

OLS estimator biased for random person OLS better for treated person, but still mean selection bias

Econometrics

Paul P. Momtaz

The Fundamental Problem with Causal Reasoning

How to deal with it?

Causality in Regressions

Roy (1951) Model