Econometrics Binary Choice Models

Paul P. Momtaz

The Anderson School UCLA

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Linear Probability Model (LPM) The Model

$$Pi = Pr[y_i = 1|x_i] = x'_i\beta$$
 (by OLS)

since
$$x'_i \beta = \mathbb{E}[y_i | x_i] = 1 \cdot P(y_i = 1 | x) + 0 \cdot P(y_i = 0 | x_i) = P(y_i = 0 | x_i)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Stochaster Threshold

Nodel

Linear Probability Model (LPM)

Problems with the LPM

Problems with the LPM:

- ▶ Pi can be < 0 or > 1.
- Error distribution not normal $\varepsilon_i = -x'_i\beta$ or $\varepsilon_i = 1 = x'_i\beta$

ε_i heteroskedastic

$$\mathbb{E}[\varepsilon_i|x_i] = P(\varepsilon_i = 1 - x'_i\beta|x_i)(1 - x'_i\beta|x_i)(-x'_i\beta)$$
$$= Pi(1 - x'_i\beta) + (1 - Pi)(-x'_i\beta) = 0$$

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

$$\begin{aligned} &Var[\varepsilon_i|x_i] = P(\varepsilon_i = 1 - x_i'\beta|x_i)(1 - x_i'\beta)^2 + P(\varepsilon_i = -x_i'\beta|x_i)(-x_i'\beta)^2 \\ &= x_i'\beta(1 - x_i'\beta)^2 + (1 - x_i'\beta)(-x_i'\beta)^2 \\ &= x_i\beta(1 - x_i'\beta) \end{aligned}$$

 $Var[\varepsilon_i | x_i]$ depends on x_i

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Non-linear Transformations Probit

Probit (If CDF Standard Normal):

$$P(y_i = 1|x_i) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_i'\gamma} \exp(-u^2/2) du = \Phi(x_i'\gamma) = F(x_i'\gamma)$$

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Non-linear Transformations Logit

Logit (If CDF Logistic):

$$P(y_i = 1 | x_i) = \frac{e^{x_i' \gamma}}{1 + e^{x_i' \gamma}} = \frac{1}{1 + e^{-x_i' \gamma}} = \bigwedge (x_i' \gamma) = F(x_i' \gamma)$$

Note:

$$F(z) = \bigwedge(z) = \frac{e^{z}}{1 - e^{z}} = \Delta f(z) = \bigwedge'(z) = \frac{e^{z}}{1 + e^{z}} \frac{1}{1 + e^{z}} = \bigwedge'(z) [1 - \bigwedge'(z)] = \frac{e^{z}}{1 + e^{z}} = \bigwedge'(z) [1 - \bigwedge'(z)] = \bigwedge'(z) [$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Latent Variable Threshold Model

Introduction

$$y_i^* = x_i'eta + arepsilon_i \qquad y_i^*$$
 unobserved = latent variable

$$y_i = egin{cases} 1 & y_i^* > \lambda \ 0 & y_i^* \leq \lambda \end{cases} \qquad \lambda ext{ a threshold}$$

Identification Problems:

$$y_{i}^{*} > \lambda \leftrightarrow x_{i}^{\prime}\beta + \varepsilon_{i} > \lambda \leftrightarrow (x_{i}^{\prime}\beta - \lambda) + \varepsilon_{i} > 0 \Rightarrow \text{set } \lambda = 0^{\text{Addent}}$$
$$P(y_{i} = 1|x_{i}) = Q(\varepsilon_{i} \le x_{i}^{\prime}\beta|x_{i}) = P\left(\frac{\varepsilon_{i}}{\sigma} \le \frac{x_{i}^{\prime}\beta}{\sigma}|x_{i}\right) = P\left(\frac{\varepsilon_{i}}{\sigma} \le x_{i}^{\prime}\beta^{*}|x_{i}\right)$$

So, β identified up to a scale factor \Rightarrow Normalize ε_i distribution, assume σ^2 known

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Econometrics

Paul P. Momtaz

Latent Variable Threshold Model

Latent Variable Threshold Model Estimation: MLE

$$P(y_i = 1 | x_i) = F(x'_i \beta), \qquad P(y_i = 0 | x_i) = 1 - F(x'_i \beta)$$

$$L(\beta) = \prod_{i=1}^{n} F(x'_{i}\beta)^{y_{i}} [1 - F(x'_{i}\beta)]^{1-y_{i}}$$
$$\log(\beta) = \sum_{i=1}^{n} y_{i} \log(F(x'_{i}\beta)) + (1 - y_{i}) \log(1 - F(x'_{i}\beta))$$

Score Function:

$$\frac{\partial \log L(\beta)}{\partial \beta} = \sum_{i=1}^{n} \left[\frac{y_i f_i}{F_i} - \frac{(1-y_i) f_i}{1-F_i} \right] x_i = \sum_{i=1}^{n} \underbrace{\left[\frac{y_i - F_i}{F_i (1-F_i)} f_i \right]}_{\text{generalized residual}} x_i = 0$$

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Logit Model

$$rac{\partial \log L(eta)}{\partial eta} = \sum_{i=1}^{n} (y_i - \bigwedge i) x_i = 0, \quad ext{ since }$$
 $f(z) = \bigwedge (z)(1 - \bigwedge (z)) ext{ cancels out }$

Remember:

$$\bigwedge i = \bigwedge (x'_i\beta) = (1 + e^{-x'_i\beta})^{-1} \qquad \text{so} \qquad \frac{\partial \log L(\beta)}{\partial \beta} = \sum_{i=1}^n [y_i - \underbrace{\mathbb{E}}_{\text{stimator}} [y_i]_{\text{stimator}} [y_i]_{\text{stimator}}$$

Hessian Matrix:

$$\frac{\partial^2 \log \mathcal{L}(\beta)}{\partial \beta \partial \beta'} = -\sum_{i=1}^n \bigwedge i(1 - \bigwedge i) x_i x_i' \Rightarrow \text{ globally concave, } \hat{\beta} \text{ unique}$$

Econometrics

Paul P. Momtaz

Latent Variable Threshold Model

n

Endogenous Selection

$$- \mathbb{E}\left[\begin{bmatrix} y_i \\ y_j \\ x_i \end{bmatrix} \right] \times_{i} = \sum_{\text{Estimator}} \begin{bmatrix} y_i \\ x_j \end{bmatrix}$$

Interpretation: Marginal Effects

Interpretation β in linear model $(y_i = x'_i \beta + \varepsilon_i)$: $\beta = \frac{\partial y_i}{\partial x_i}$

Interpretation in BCM ($\rho_i = F(x'_i\beta)$):

$$\frac{\partial \rho[y_i = 1 | x_i]}{\partial x_i} = f(x'_i \beta)\beta \Rightarrow \text{Marginal effect}$$

Marginal Effects $\neq \beta$ (but sign is the same)

Logit:
$$\frac{\partial \rho(y_i = 1 | x_i)}{\partial x_i} = \bigwedge (x'_i \beta) [1 - \bigwedge (x'_i \beta)] \beta = \rho_i (1 - \rho_i) \beta$$

Probit:
$$\frac{\partial \rho(y_i = 1 | x_i)}{\partial x_i} = \phi(x'_i \beta) \beta = \phi(\Phi^{-1}(\rho_i)) \beta$$

Marginal effects often evaluated at $\rho_i = \overline{\rho}$ or $x_i = \overline{x}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Econometrics

Paul P. Momtaz

inear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Generalized Residuals

$$e_i^G = rac{y_i - F_i}{F_i(1 - F_i)} f_i$$

ML Requires: $\sum_{i=1}^n \hat{e}_i^G x_i = 0$

$$\hat{e}_{i}^{G} = \begin{cases} f_{i}/F_{i} & y_{i} = 1 \\ -f_{i}/(1-F_{i}) & y_{i} = 0 \end{cases}$$

Logit:
$$\hat{e}_i^G = y_i - \bigwedge (x_i'\beta) = y_i - \hat{\rho}_i$$

Probit:
$$\hat{e}_i^G = \begin{cases} \frac{\phi(x_i'\hat{\beta})}{\Phi(x_i'\hat{\beta})} & y_i = 1\\ \frac{-\phi(x_i'\hat{\beta})}{1-\Phi(x_i'\hat{\beta})} & y_i = 0 \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model LM Tests for BCM:

- Outer-product gradient (OPG) form of LM test.
- LM test for omitted regressors.
- LM test for heteroskedasticity

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tobit Model

Introduction

Truncated moments:

$$z \sim N(0, 1), \qquad \phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) \qquad \Phi(z) = \int_{-\infty}^{z} \phi(u) \frac{du}{du} \text{ transformations}$$

$$\mathbb{E}[z|z < k] = \int_{-\infty}^{k} z\phi(z|z < k) dz$$

$$= \int_{-\infty}^{k} z\phi(z)/\rho(z < k) dz$$

$$= \frac{1}{\Phi(k)} \int_{-\infty}^{k} z\phi(z) dz$$

$$= \frac{\phi(k)}{\Phi(k)} < 0, \qquad \text{where } \int_{-\infty}^{k} z\phi(z) dz = -\phi(k)$$

$$\mathbb{E}[z|z > k] = \frac{\phi(k)}{1 - \Phi(k)} > 0$$

Econometrics

Paul P. Momtaz

Tobit Model Example and Inverse Mills Ratio

Example: Latent variable model $y_i^* = x_i'\beta + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma^2)$

$$\mathbb{E}[\varepsilon_i \varepsilon_i > -x_i'\beta, x_i] = \sigma \mathbb{E}\left[\frac{\varepsilon_i}{\sigma} | \frac{\varepsilon_i}{\sigma} > -\frac{x_i'\beta}{\sigma}, x_i\right] = \sigma \frac{\phi\left(\frac{x_i'\beta}{\sigma}\right)}{\Phi\left(\frac{x_i'\beta}{\sigma}\right)} = \sigma \lambda_i^{\mathsf{Tr}}$$

 λ_i is inverse Mills Ratio

Sample Tobit Model:

$$y_i^* = x_i'\beta + \underbrace{\varepsilon_i \sim \mathcal{N}(0, \sigma^2)}_{\text{Tobit Assumption}} \qquad y_i = \begin{cases} y_i^* = x_i'\beta + \varepsilon_i & \text{if } y_i^* > 0\\ 0 & \text{if } y_i^* = 0 \end{cases}$$

Econometrics

Paul P. Momtaz

inear Probability Model

Non-linear Transformations

atent Variable. Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model Tobit Model OLS Estimator Bias OLS Estimator Bias:

$$\mathbb{E}[y_i | \text{interior}] = \mathbb{E}[y_i | y_i^* > 0, x_i] = x_i'\beta + \mathbb{E}[\varepsilon_i | \varepsilon_i > -x_i'\beta, x_i]$$
$$\mathbb{E}[y_i | \text{interior} + \text{corner} = x_i] = \mathbb{E}[y_i | y_i > 0, x_i] \cdot P[y_i > 0 | x_i] + P(y_i = 0 | x_i) =$$
$$= P(y_i > 0, x_i) \cdot [x_i'\beta + \mathbb{E}[\varepsilon_i | \varepsilon_i > -x_i'\beta, x_i]] \overset{\text{Tobit Model}}{\underset{\text{Multi Estimation of the set of$$

-

$$\mathbb{E}[y_i|x_i] \neq x'_i \beta \neq \mathbb{E}[y_i|\text{interior}]$$

Correcting OLS estimator bias (when $y_i > 0$, i.e. interior solutions)

$$\mathbb{E}[y_i|y_i > 0, x_i] = x'_i\beta + \mathbb{E}[\varepsilon_i|\varepsilon_i > -x'_i\beta, x_i]$$
$$= x'_i\beta + \sigma \frac{\phi\left(\frac{x'_i\beta}{\sigma}\right)}{\Phi\left(\frac{x'_i\beta}{\sigma\sigma}\right)}$$

Econometrics Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias

ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Mode Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias

ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator

Two-Step Heckman Sample Selection Bias

Define

$$D_i = \begin{cases} 1 & \text{if } y_i > 0 \text{ (interior solution)} \\ 0 & \text{if } y_i = 0 \text{ (corner solution)} \end{cases}$$

$$\mathsf{P}(D_i=1|x_i)=\mathsf{P}(y_i>0|x_i)=\mathsf{P}(y_i^*>0|x_i)=\mathsf{P}(arepsilon_i\leq x_i'eta|x_i)=0$$

Step 1: Estimate β/σ using Probit for $P(D_i = 1|x_i)$ on full sample and construct $\hat{\lambda}_i$ for each observation of interior solution Step 2: OLS regression of y_i on x_i and $\hat{\lambda}_i$ using interior cases

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Packs For institution Selection Tabit Till Model Selection RC

Heckman's Two Step Estimator Stochastic Threshold Model

Two-Step Heckman Sample Selection Bias Drawbacks

Drawbacks of this procedure:

- OLS s.e. in the step 2 wrong
- Identification only through fact that λ_i non-linear
 - Problematic if λ_i little variation and close to linear in x_i
- Monte Carlo shows additional variable in step 1 often relevant for identification in step 2, but not available.

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias

ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias

ML Estimation of Tobit Model

Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold

ML Estimation of Tobit Model

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

$$\log L = \sum_{y_i=0} \log P(y_i = 0|x_i) + \sum_{y_i>0} \log(f(y_i|y_i > 0, x_i)P(y_i > 0|x_i)) \stackrel{\text{vert Variable}}{=} \sum_{y_i=0} \log P(y_i = 0|x_i) + \sum_{y_i>0} \log(f(y_i|x_i))$$

$$\sum_{y_i=0} \log P(y_i = 0|x_i) + \sum_{y_i>0} \log(f(y_i|x_i))$$

$$\sum_{y_i=0} \log P(y_i = 0|x_i) + \sum_{y_i>0} \log(f(y_i|x_i))$$

Intuition:

- For y_i = 0: likelihood contribution given by having proba mass P(y_i = 0|x_i)
- For y_i > 0: likelihood contribution given by conditional clustering given y_i > 0, f(y_i|y_i > 0|x_i) times proba mass P(y_i > 0|x_i)

ML Estimation of Tobit Model Mechanics

Econometrics

Paul P. Momtaz

Linear Probability Model

For
$$y_i = 0$$
 $P(y_i = 0|x_i) = P(x'_i\beta + \varepsilon_i \le 0|x_i) = \Phi\left(-\frac{x'_i\beta}{\sigma}\right) = \frac{1}{1-\sigma} \Phi\left(\frac{x'_i\beta}{\sigma}\right)$
For $y_i > 0$ $f(y_i|x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(y_i - x'_i\beta)^2}{\sigma^2}\right) = \frac{1}{\sigma} \phi\left(\frac{y_{i-1}x'_i\beta}{\sum_{\substack{y_i \ge 0 \\ \text{Selection}}}\right)$
 $\operatorname{He stimuton of Totic Model Effects Totic Model Effect$

Transform $FOC[\beta]$ to get generalized residual $\hat{\varepsilon}_{i}^{G} = D_{i} \frac{y_{i} - x_{i}^{\prime}\beta}{\sigma} - (1 - D_{i})\hat{\lambda}_{0i}$, so far $D_{i} = 1, \varepsilon_{i}^{G}$ is scaled $\frac{\hat{\varepsilon}_{i}}{\beta}$

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

ML Estimation of Tobit Model

Interpretation

Interpretation of Tobit Coefficients:

 ^{∂P(y_i=0|x_i)}/_{∂x_i} = -φ (x_i^{'β}/_σ) β/σ which is scaled version of Probit without normalized restrictions

 ^{∂E[y_i|x_i]}/_{∂x_i} = βΦ (x_i^{'β}/_σ) where sign determined by β as per Probit (total effects)

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Fwo-Step Heckman Sample Selection Bias

ML Estimation of Tobit Model

Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model

Decomposition of Tobit Model Effects

Endogenous Selection (or Tobit II) Mode Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model

Decomposition of Tobit Model Effects

Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator

Decomposition of Tobit Model Effects

Total effects have two parts

$$\frac{\partial \mathbb{E}[y_{i}|x_{i}]}{\partial x_{i}} = \underbrace{P(y_{i} > 0|x_{i}) \frac{\partial \mathbb{E}[y_{i}|y_{i} > 0, x_{i}]}{\partial x_{i}}}_{\beta \Phi\left(\frac{x_{i}'\beta}{\sigma}\right) - \beta \phi\left(\frac{x_{i}'\beta}{\sigma}\right) \left[\frac{x_{i}'\beta}{\sigma} + \frac{\phi\left(\frac{x_{i}'\beta}{\sigma}\right)}{\Phi\left(\frac{x_{i}'\beta}{\sigma}\right)}\right]}{\frac{\partial \mathbb{E}[y_{i}|y_{i} > 0, x_{i}]}{\partial x_{i}} = \beta \gamma\left(\frac{x_{i}'\beta}{\sigma}\right)} + \underbrace{\mathbb{E}[y_{i}|y_{i} > 0, x_{i}]}_{\text{Toreshold Mode Biases}} \xrightarrow{\text{ML Estimation of Tobic Mode Biases}}_{Section Biases}$$

Where $\gamma()$ is an adjustment factor $\in (0,1)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□♥

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects

Endogenous Selection (or Tobit II) Model

Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model

Decomposition of Tobit Model Effects

Endogenous Selection (or Tobit II) Model

Selection Bias Heckman's Two Step

Stochastic Threshold

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Endogenous Selection (or Tobit II) Model

Deviate from assumption that same variables x_i affecting probability of $y_i > 0$ observation also determine the level of $y_i > 0$ observation.

$$y_{1i} = \begin{cases} y_{1i}^* & \text{if } y_{2i}^* > 0\\ \text{not observed} & \text{if } y_{2i}^* \le 0 \end{cases} \qquad y_{2i}^* = x_{2i}'\beta + \varepsilon_{2i}, \qquad y_{2i}' = y_{2i}'\beta + \varepsilon_{2i}'\beta +$$

 y_{2i}^* observed if $y_{2i}^* = 0$ (observation rule) $\varepsilon_{1i}, \varepsilon_{2i} \sim \text{Joint } N$

$$\begin{pmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \end{bmatrix} \Rightarrow \sigma_{12} \neq 0 \Rightarrow \text{endogenous selection}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Wo-Step Heckman Sample Selection Bias ML Estimation of Fobit Model

* notbiobserved Endogenous Selection

(or Tobit II) Model

Selection Bias Heckman's Two Step

Endogenous Selection (or Tobit II) Model

Selection Indicator:
$$D_i = \begin{cases} 1 & \text{if } y_{2i}^* > 0 \\ 0 & \text{else} \end{cases}$$

Can only estimate β_2/σ_2 , so set $\sigma_2 = 1$ (as in Probit)

Example: Level of wage depends on x_{1i} . But level of wage only observed for workers. Prosperity to worker depends on exogenous x_{2i} . $\sigma_{12} \neq 0$ since sample of wages growth from people that work.

Random sample assumption violated

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects

Endogenous Selection (or Tobit II) Model

Selection Bias Heckman's Two Step Estimator Stochastic Threshold

Nodel

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model

Selection Bias

Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias

Heckman's Two Step Estimator

Stochastic Threshold Model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Selection Bias

$$\mathbb{E}[\varepsilon_{2i}|y_{2i}^* > 0, x_{2i}] = \mathbb{E}[\varepsilon_{2i}|\varepsilon_{2i} > -x_{2i}'\beta_{2i}x_{2i}]$$
$$= \frac{\phi(x_{2i}'\beta)}{\Phi(x_{2i}'\beta)} = \lambda_i$$

$$\mathbb{E}[\varepsilon_{2i}|y_{2i}^*>0, x_{2i}] = \sigma_{12}\mathbb{E}[\varepsilon_{2i}|y_{2i}^*>0, x_{2i}] = \sigma_{12}\lambda_i$$

 $\mathbb{E}[y_{2i}^{*}|y_{2i}^{*} > 0, x_{2i}^{\prime}\beta_{1} + \sigma_{12}\lambda_{i}] \neq x_{1i}^{\prime}\beta_{1}$

- Endogenous selection or selectivity bias
- λ_i is equivalent to Medeman's lambda, Heckman correction, inverse Mills ratio.

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias

Heckman's Two Step Estimator

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias

Heckman's Two Step Estimator

Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

Latent Variable Threshold Model

Tobit Mode

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias

Heckman's Two Step Estimator

Stochastic Threshold Model

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Heckman's Two Step Estimator

Step 1:

Estimate Probit $P(D_i = 1 | x_{2i}) = \Phi(x'_{2i}\beta_2)$ by ML to get $\hat{\beta}_2$. Construct $\hat{\lambda}_i = [\phi(x'_{2i}\hat{\beta}_2)/\Phi(x'_{2i}\hat{\beta}_2)]$ in sample where y^*_{2i} observable.

Step 2:

Run OLS $y_i = x'_{2i}\beta_1 + \sigma_{12}\hat{\lambda}_i + \text{ error for selected sample}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Econometrics

Paul P. Momtaz

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

I wo-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias

Heckman's Two Step Estimator

Linear Probability Model

Non-linear Transformations

Latent Variable Threshold Model

Tobit Model

Two-Step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Econometrics

Paul P. Momtaz

inear Probability. Model

Non-linear Fransformations

atent Variable

Tobit Mode

I wo-step Heckman Sample Selection Bias ML Estimation of Tobit Model Decomposition of Tobit Model Effects Endogenous Selection (or Tobit II) Model Selection Bias Heckman's Two Step Estimator Stochastic Threshold Model

Stochastic Threshold Model (Verbeck)

$$y_{1i}^* \equiv$$
 level of wage, $S_i^* = z_i' \gamma + \eta_i \equiv$ reservation wage
 $y_{2i}^* \equiv$ propensity towards work

$$y_{2i}^* = y_{1i}^* - S_i^* = x'_{2i}\beta_2 + \varepsilon_{2i}$$
 where $\varepsilon_{2i} = \varepsilon_{1i} - \eta_i$ and $x'_{2i}\beta_2 = x_{2i}$

Implication:

•
$$\sigma_{12} = cov(\varepsilon_{1i}, \varepsilon_{2i}) = Var(\varepsilon_{1i}) - cov(\varepsilon_{1i}, \eta_i)$$

• If
$$cov(\eta_i, \varepsilon_{1i}) = 0 \Rightarrow \sigma_{12} > 0$$

 \triangleright x_{2i} contains all variables in x_{1i} plus additional from z_i identification when if linear combinations of x_{1i} and x_{2i} since λ non-linear in contrast to linear model.

Paul P. Momtaz

$$\beta_{2^{\text{bit}}}^{\text{ecomposition}} X_{1} \beta_1 =$$