Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics Panel Data

Paul P. Momtaz

The Anderson School UCLA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

The Cross-Sectional Problem

The problem with cross sectional data (solved by panel data): Assume true causal relationship

 $y_{it} = \beta_1 + \beta_2 I_{it} + \beta_3 m_i + \varepsilon_{it}$ m_i is time invariant, unobservable

Assume only cross-sectional data available to estimate:

$$y_i = \beta_1 + \beta_2 I_i = \eta_i$$

$$\mathbb{E}[y_i|I] = \beta_1 + \beta_2 I_i + \mathbb{E}[\eta_i|I]$$

= $\beta_1 + \beta_2 I_i + \beta_3 \mathbb{E}[m_i|I]$

$$\mathbb{E}[\mathbf{m}_i|I] = \lambda_1 + \lambda_2 I_i$$
$$\mathbb{E}[\mathbf{y}_i|I] = \underbrace{(\beta_1 + \beta_3 \lambda_1)}_{b_1} + \underbrace{(\beta_2 + \beta_3 \lambda_2)}_{b_2} I_i$$

 b_2 biased estimate of β_2

► If $\beta_3 > 0, \beta_2$ over-estimated if $\lambda_2 > 0$ or underestimated if $\lambda_2 < 0$

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

General Model

$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} i & 0 & \dots & 0 \\ 0 & i & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & i \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} + \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \beta + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}$

Where, *i* is the T-dimensional column vector with ones, y_i and x_i are T times obs for *i*, ε_i is T disturbances and a_i is FE for *i*

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variable

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Fixed Effects (or Within) Estimators Least-Suares Dummy Variable (LSDV) Model

· ./

1

Econometrics Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance First Difference FEEstimators and Lagged Dependent Variables

Between Estimators

VO

Comparison of Estimators

Random Effects Estimator

$$y_{it} = d_1\alpha_1 + \dots + d_N\alpha_N + x_{it}\beta + \varepsilon_{it} \quad \text{or} \quad Y = D\alpha + X\beta + \varepsilon_{it}$$
Where D_i is $NT \times T$ matrix, α is $N \times 1$, X is $NT \times x$, β is
 $x \times 1$, ε is $NT \times 1$
 \Rightarrow Very simple, but computationally infeasible (often times N
too large)

0 1

.

٧/

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Fixed Effects (or Within) Estimators Analysis of Covariance

Idea: use partitioned regression:

- 1. $y \sim D$ and get residuals y^* .
- 2. $x \sim D$ and retrieve residuals x^* .
- 3. $y^* \sim x^*$ to obtain unbiased β

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Fixed Effects (or Within) Estimators Analysis of Covariance

Mechanics:

- Projection matrix $M = D(D'D)^{-1}D'$.
- Pre-multiply any vector z by M gives least squares prediction of z given D.
- Partialling out matrix $M = I D(D'D)^{-1}D'$
- Pre-multiply any z by M gives least squares residuals of regression z ~ D.
- Note MD = 0, MM = M, DD = D (idempotent)

•
$$My = MD\alpha + Mx\beta + M\varepsilon \Rightarrow y^* = x^*\beta + \varepsilon^*$$

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Fixed Effects (or Within) Estimators Analysis of Covariance

Note

Hence

$$My=MD\alpha + Mx\beta + M\varepsilon = y^* = x^*\beta + \varepsilon^* = [y_{it} - \overline{y}_i] = [x_{it} - \overline{x}_i] + [\varepsilon_{it} - \overline{\varepsilon}_i]$$

 \Rightarrow Unbiased and consistent $b_{FE} = [X'MX]^{-1}[X'MY], a_i\overline{y}_i - \overline{x}_i b_{FE}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators Least-Su Des Dummy Variable Model Analysis & Cevariance First Difference FE Estimators and Lagged Dependent Variables Betwee M

Estimators

Comparison of Estimators

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variabl

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

First Difference

Only two time observation for each i

 $y_{i1} - y_{i2} = [x_{i1} - x_{i2}]\beta + \varepsilon_{i1} - \varepsilon_{i2}$ by OLS where β is *FE* estimator

Difference-in-differences Strategies

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance

First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

FE Estimators and Lagged Dependent Variables Problem

$$y_{it} = \alpha_i + y_{it-1}\rho + x_{it}\beta + \varepsilon_{it}$$

problem: y_{it-1} predetermined but not strictly exogenous.

 $\Rightarrow \text{Both LSDV and An .of. Cov. estimators of } \rho \text{ and } \beta \text{ will}$ be biased and inconsistent.

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

FE Estimators and Lagged Dependent Variables LSDV Bias

LSDV: Reason for bias:

► Define
$$z_{it} = \begin{bmatrix} D_{it} & y_{it-1} & x_{it} \end{bmatrix}$$
 and $\gamma = \begin{bmatrix} \alpha \\ \rho \\ \beta \end{bmatrix}$

▶
$$y_{it} = z_{it}\gamma + \varepsilon_{it}$$

▶ $\mathbb{E}[y|z] = z\gamma + \mathbb{E}[\varepsilon|z] \neq z\gamma$ since $\mathbb{E}[\varepsilon|y] \neq 0$
▶ $\mathbb{E}[\varepsilon_{it}|y_{is}] = 0$ for $s < t$
▶ $\mathbb{E}[\varepsilon_{it}|y_{is}] \neq 0$ for $s \ge t$

Failure of orthogonality condition

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

FE Estimators and Lagged Dependent Variables Analysis of Covariance Bias

An . of . Cov Reason for bias:

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

FE Estimators and Lagged Dependent Variables Solution

Solution: First differencing and IV

►
$$T > 2, [y_{it} - y_{it-1}] =$$

 $[y_{it-1} - y_{it-2}]\rho + [x_{it} - x_{i-1}]\beta + \varepsilon_{it} + \varepsilon_{it-1}$

- So, α_i is eliminated
- ▶ $y_{it-2}, (y_{it-2} y_{it-3}), x_{it-1}, (x_{it-2} x_{it-2})$ are valid IV.
- Orthogonality assumption hold
- lags > 1 of dependent variable have to go further XXX yo find valid IV.

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

FE Estimators and Lagged Dependent Variables Other Pitfalls

Other pitfalls with FE estimators:

- ► Waste of "between" estimation.
- loss of degree of freedom \rightarrow loss of efficiency.
- effect of time-invariant explanatory factors eliminated.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

out of sample predictions.

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model

Analysis of Covariance

First Difference

FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Between Estimator

$$\begin{aligned} \mathbf{a}_i &= \mathbf{a} + \mathbf{v}_i \\ \overline{\mathbf{y}}_i &= \alpha + \overline{\mathbf{x}}_i \beta + \mathbf{v}_i + \overline{\varepsilon}_i = \alpha \overline{\mathbf{x}}_i \beta + \eta_i \end{aligned}$$

Estimation by OLS

- Standard OLS assumption on ε_{it}
- In contrast to within/FE, no need to assume i specific effect fixed.

•
$$cov(\eta_i, \overline{x}_i) = cov(v_i, \overline{x}_i) = 0$$

Unbiased and consistent but not efficient.

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Between Estimator

Notations:

- $\blacktriangleright \ \overline{\overline{y}} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{it}$
- $\blacktriangleright \ \overline{\overline{x}} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}$
- Moment matrices of overall sums of squares and cross-products

$$S_{xx}^{\circ} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{\overline{x}})(x_{it} - \overline{\overline{x}})'$$

$$S_{xy}^{\circ} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{\overline{x}})(y_{it} - \overline{\overline{y}})'$$

Moment matrices of "Within"

$$S_{xx}^{w} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x}_i)(x_{it} - \overline{x}_i)'$$

$$S_{xy}^{w} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x}_i)(y_{it} - \overline{y}_i)'$$

Moment matrices of "Between"

$$S_{xx}^{b} = \sum_{i=1}^{N} (\overline{x} - \overline{\overline{x}}) (\overline{x}_{i} - \overline{\overline{x}})'$$

$$S_{xy}^{b} = \sum_{i=1}^{N} (\overline{x} - \overline{\overline{x}}) (\overline{y}_{i} - \overline{\overline{y}})'$$

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Comparison of Estimators

Note that

$$egin{aligned} S_{xy}^w &= S_{xx}^w b^w \ S_{xy}^b &= S_{xx}^b b^b \end{aligned}$$

$$\Rightarrow b^{OLS} = F^w b^w + F^b b^b \quad \text{where} \quad F^w = [S^w_{xx} + S^b_{xx}]^{-1} S^w_{xx} = I - F^b$$

Note: Not most efficient; biased and inconsistent if individual specific effects correlated with regressors.

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

In contrast to FE model, RE model assume individual differences are random disturbances. Advantage is that linear difference is used. Disadvantage is that it assumes there is no correlation between regressors and random individual disturbances (Hausman Test).

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators

Random Effects Estimator

Random Effects Estimator

$$y_{it} = \alpha + x_{it}\beta + v_i + \varepsilon_{it} = \alpha + x_{it}\beta + w_{it}$$

OLS estimator is inefficient, so transform model and apply GLS

Transform Model:
$$v^{-\frac{1}{2}}y_{it} = v^{-\frac{1}{2}}\alpha + v^{-\frac{1}{2}}x_{it}\beta + v^{-\frac{1}{2}}w_{it}$$

Feasible GLS since v unknown! Use OLS for transformed model

Hausman Test $(\mathbb{E}[v_i|x_{it}] = 0 \equiv H_0) : w = [b^{FE} - b^{RE}]'[Vas[b^{FE}] - Vas[b^{RE}]]^{-1}[b^{FE} - b^{RE}]$ is the test statistic with di-squared and XXX

Econometrics

Paul P. Momtaz

The Cross-Sectional Problem

General Model

Within Estimators

Least-Suares Dummy Variable Model Analysis of Covariance First Difference FE Estimators and Lagged Dependent Variables

Between Estimators

Comparison of Estimators